

Closed Cycles and the Circular Society 2023: The Power of Ecological Engineering 1-5 October 2023, Chania, Greece

www.iees.tuc.gr

Production of biogenic aromatics from lignocellulosic agricultural residues

Timo Steinbrecher¹, Magdy Sherbi², Marvin Scherzinger¹, Jakob Albert², Martin Kaltschmitt¹

- ¹ Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Germany
- ² Institute of Technical and Macromolecular Chemistry, University of Hamburg, Germany

1) Motivation and goal

- <u>Challenge: aromatic chemicals are almost exclusively produced from fossil petroleum nowadays.</u>
- Potential: the plant polymer lignin is composed of aromatic monomers, abundant worldwide in non-food biomasses like agricultural residues.
- Challenge: conventional biorefineries (f.e. for paper production) lead to structural degradation of lignin, which impedes its selective 2. depolymerization to monomers.
 - Potential: lignin degradation can be avoided by applying only **mild processes** (hypothetically anaerobic digestion) for lignin accumulation and depolymerization could be performed using active stabilization strategies ("lignin-first processes" like reductive catalytic fractionation).

Goal: Depolymerization of lignin in agricultural residues like straw and straw digestates by reductive catalytic fractionation.

3) Results

- Biogenic aromatics can be recovered from the agricultural residues straw and straw digestates by reductive catalytic fractionation.
- Yields increase with hydrogen pressure up to 50 bar and with reaction time up to 7 h (see Figure 3).
- Lignin accumulation during anaerobic digestion (see Table 1) → higher yields on biomass-basis from straw digestates than from unfermented straw (see Figure 2).
- Apparently no significant structural changes in lignin during anaerobic digestion, except for a slight degradation of hydroxycinnamates (decrease in monomers 5 and 6; see Figure 2).

- Monomer selectivity from straw digestates is influenced by H₂ pressure and catalyst choice in a similar way as observed for woods ^[1,2]: High H₂ pressures and catalysts like *Pd/C* and *NiO/SiO*₂- $AI_2O_3 \rightarrow$ high shares of γ -OH-monomers 1 and 3 (see Figure 3).
- Monomer yields from hardwoods like beech woods are significantly higher both on biomass and lignin basis (see Figure 2).
- Monomers 5 and 6 only from straw and straw digestates, not from beech wood (higher selectivities from wood, see Figure 2).

Figure 2: Monomer yields Y_{BM} based on biomass weight (left axis) and lignin-based monomer yields Y_{Lia} (right axis). $NiSat=NiO/SiO_2-AI_2O_3$.

Figure 3: Influence of reaction time (left) and H₂ pressure (right) on monomer yield Y_{BM} (left axis) and share of γ -OH-monomers (monomers 1 and 3, right axis) during reductive catalytic fractionation of straw digestate. With NiSat=NiO/SiO₂-Al₂O₃-catalyst.

0

50

20

H₂ pressure in bar

60

25

Reaction time in h

4) Conclusion

- Biogenic aromatics producible from lignin-containing agricultural residues by reductive catalytic fractionation.
- Lignin accumulation without significant structural degradation during anaerobic digestion \rightarrow increased yields on biomass basis from digested biomasses compared to their unfermented counterparts.
- But: most abundant agricultural residues are herbaceous \rightarrow lower monomer yields on biomass and lignin basis than from hardwoods.
- Comprehensive techno-economic assessment considering all side-streams needed for meaningful comparison.

Contact:

+49 40 42878-4882

www.tuhh.de/iue

References:

[1] Renders, T.; Cooreman, E.; van den Bosch, S.; Schutyser, W.; Koelewijn, S.-F.; Vangeel, T. et al. (2018): timo.hannes.steinbrecher@tuhh.de Catalytic lignocellulose biorefining in n -butanol/water. A one-pot approach toward phenolics, polyols, and cellulose. In: Green Chem. 20 (20), S. 4607–4619. DOI: 10.1039/c8gc01031e [2] Van den Bosch, S.; Schutyser, W.; Koelewijn, S-F; Renders, T.; Courtin, C. M.; Sels, B. F. (2015): Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. In Chemical communications (Cambridge, England) 51 (67), pp. 13158–13161. DOI: 10.1039/c5cc04025f.

